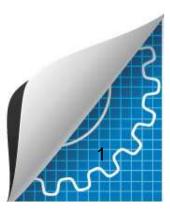

Jurusan Kimia F MIPA Universitas Nusa Bangsa


Lecture I

Introduction and Overview of Biosensors .

By: Djadjat Tisnadjaja E-mail: d.tisnadjaja@gmail.com

Web page: http://tisnadjaja@wordpress.com

Outlines

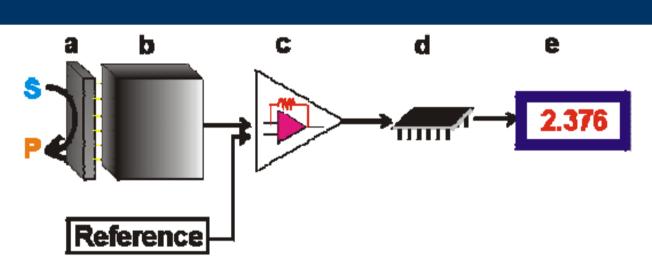
- Introduction of the course
- Terms and definition
- Rational of a biosensor
- Types of biosensor
- Applications of biosensors
- Electrochemistry and biosensors
- Nanotechnology in biosensor

Course Introduction

What will we learn from the course?

- Principals of biosensors
- Fundamentals of analytical electrochemistry
- Biofunctionalization and surface modification
- Aspects and perspectives of nanobioelectronics
- Nanomaterials and nanoengineering for biosensor development
- DNA, protein based electronics

"An important player in 21st century engineering will be the 'biotraditional engineer,' the recipient of a traditional engineer's training and a modicum of exposure to life science." M.H. Friedman, J. Biomechanical Eng, V123, December 2001


What is biosensor?

Chemical Sensors:

"A chemical sensor is a device that transforms chemcial information, ranging from the concentration of a specific sample component to total composition analysis, into an analytically useful signal" – IUPAC

Biosensors: are analytical tools for the analysis of bio-material samples to gain an understanding of their <u>bio-composition</u>, <u>structure</u> and <u>function</u> by converting a biological response into an electrical signal. The analytical devices composed of a biological recognition element directly interfaced to a signal transducer which together relate the concentration of an analyte (or group of related analytes) to a measurable response.

Biosensor Components

Schematic diagram showing the main components of a biosensor. The bio-reaction (a) converts the substrate to product. This reaction is determined by the *transducer* (b) which converts it to an electrical signal. The output from the transducer is amplified (c), processed (d) and displayed (e).

(http://www.lsbu.ac.uk/biology/enztech/biosensors.html)

Selective Elements and Transducers

Selective elements.

Transducers.

synthetic ionophores synthetic carriers supramolecular structures, clusters solid lavers: metals - metal oxides, crystals - polymers, conducting polymers organisms microorganisms plant and animal tissues cells organelles membranes, bilayers and monolayers enzymes receptors antibodies nucleic acids natural organic and inorganic molecules micelles, reversed micelles

(Current, potential, electrochemical:

- potentiometric Resistance, impedance)

- amperometric

- conductimetric

- voltammetric, polarographic

- impedimetric, capacitive

- piezoelectric

cotical:

(florescence,

vical: light scattering, etc.), - transmission / absorbance / reflection

- dispersion, interferometric

- polarimetric

- circular dichroism, ellipsometry

- scattering

- emission intensity, photon counting

(luminescence) decay time

(Thermal, temperature) calorimetric acoustic / gravimetric: (Mass Sensitive)

- surface photo-acoustic wave

- quartz microbalance

Ref: Spichiger-Keller U.E., "Chemical Sensors and Biosensors for Medical and Biological Applications, Wiley-VCH, 1998

Defining events in the history of biosensor development

First report on the immobilisation of proteins: adsorption of invertase on activated charcoal 1916 1922 First glass pH electrode 1956 Invention of the oxygen electrode (**Clark**) 1962 First description of a biosensor: an amperometric enzyme electrode for glucose (Clark) 1969 First potentiometric biosensor: urease immobilised on an ammonia electrode to detect urea 1970 Invention of the Ion-Selective Field-Effect Transistor (ISFET) (Bergveld) 1972/5 First commercial biosensor: Yellow Springs Instruments glucose biosensor 1975 First microbe-based biosensor First immunosensor: ovalbumin on a platinum wire Invention of the pO2 / pCO2 optode 1976 First bedside artificial pancreas (Miles)

#

Biosensor History (cont.)

1980	First fibre optic pH sensor for <i>in vivo</i> blood gases (Peterson)
1982	First fibre optic-based biosensor for glucose
1983	First surface plasmon resonance (SPR) immunosensor
1984	First mediated amperometric biosensor: ferrocene used with glucose oxidase for the detection of glucose
1987	Launch of the MediSense ExacTech [™] blood glucose biosensor
1990	Launch of the Pharmacia BIACore SPR-based biosensor system
1992	i-STAT launches hand-held blood analyser
1996	Glucocard launched
1996	Abbott acquires MediSense for \$867 million
1998	Launch of LifeScan FastTake blood glucose biosensor
1998	Merger of Roche and Boehringer Mannheim to form Roche Diagnostics
2001	LifeScan purchases Inverness Medical's glucose testing business for \$1.3billion
1999-current	BioNMES, Quantum dots, Nanoparticles, Nanocantilever, Nanowire and Nanotube

Type of Biosensors (by analytes)

Types of Biological Recognition Elements	Name of the BIOSENSOR
Enzymes	Enzyme electrode
Proteins	
Antibodies	Immunosensor
DNA	DNA sensor
Organelles	
Microbial cells	Microbial sensor
Plant and animal tissues	

Types of Biosensor (by detection mode)

Types of Transducers	Measured Property
Electrochemical	Potentiometric
	Amperometric
	Voltametric
Electrical	Surface conductivity
	Electrolyte conductivity
Optical	Fluoresence
	Adsorption
	Reflection
Mass sensitive	Rezonans frequency of piezocrytals
Thermal	Heat of reaction
	Heat of adsorpsion

 \sim

Typical Sensing Techniques for Biosensors

- Fluorescence
- DNA Microarray
- SPR Surface plasmon resonance
- Impedance spectroscopy
- SPM (Scanning probe microscopy, AFM, STM)
- QCM (Quartz crystal microbalance)
- SERS (Surface Enhanced Raman Spectroscopy)
- Electrochemical

Application of Biosensor

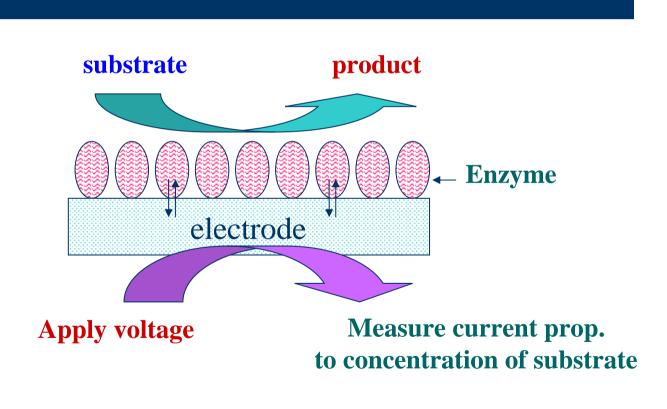
- Applications
- • Study of biomolecules and how they interact with
- one another
- - E.g. Biospecific interaction analysis (BIA)
- • Drug Development
- In-home medical diagnosis
- Environmental field monitoring
- • Scientific crime detection
- • Quality control in small food factory
- • Food Analysis

Biosensor Market

Biomedical Diagnostics

- Doctors increasingly rely on testing
- Needs: rapid, cheap, and "low tech"
- Done by technicians or patients
- Some needs for *in-vivo* operation, with feedback

Glucose-based on glucose oxidase Cholesterol - based on cholesterol oxidase Antigen-antibody sensors - toxic substances, pathogenic bacteria Small molecules and ions in living things: H⁺, K⁺, Na⁺, NO, CO₂, H₂O₂ DNA hybridization, sequencing, mutants and damage


Commercial Glucose Sensors

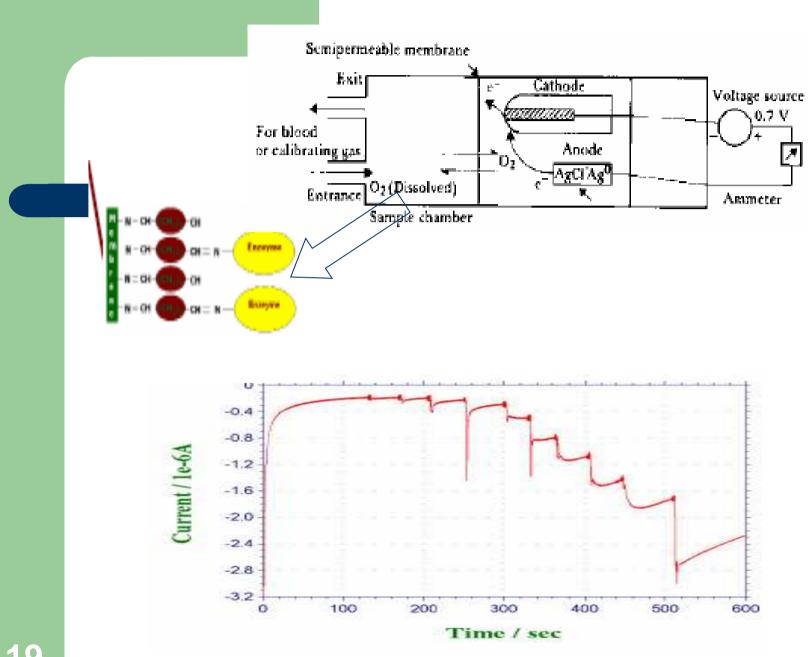
- Biggest biosensor success story!
- Diabetic patients monitor blood glucose at home
- First made by Clark in 1962, now 5 or more commercial test systems
- Rapid analysis from single drop of blood
- Enzyme-electrochemical device on a slide

Basic Characteristics of a Biosensor

- 1. LINEARITY: Maximum linear value of the sensor calibration curve. Linearity of the sensor must be high for the detection of high substrate concentration.
- 2. SENSITIVITY: The value of the electrode response per substrate concentration.
- **3. SELECTIVITY:** Interference of chemicals must be minimised for obtaining the correct result.
- **4. RESPONSE TIME:** The necessary time for having 95% of the response.

Principle of Electrochemical Biosensors

Electrochemical Glucose Biosensor

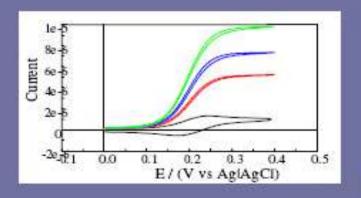


18

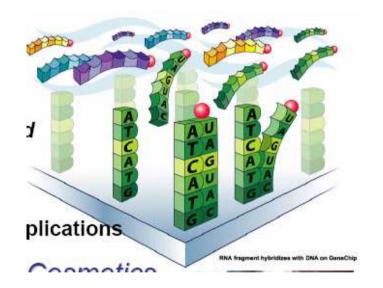
GOX: Glucose Oxidase
GOX: Glucose
Glucose
Electrode

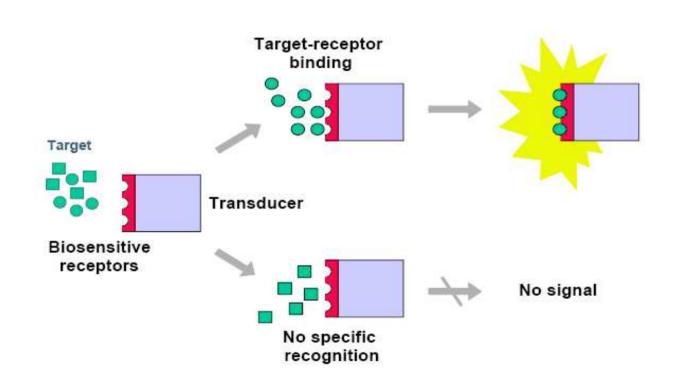
$$H_2O_2$$

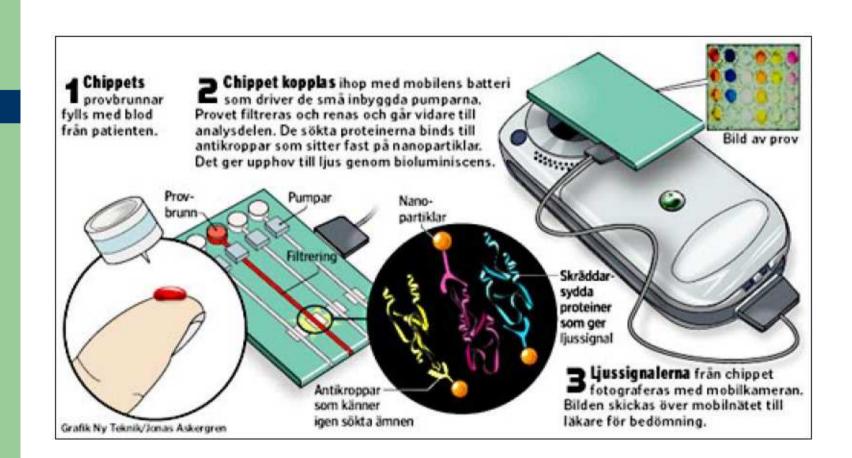
Gluconic Acid
 H_2O_2
 H_2


The first and the most widespreadly used commercial biosensor: the blood glucose biosensor – developed by *Leland C. Clark in* 1962

The Glucose Biosensor


n Coupling of glucose oxidase (via a mediator) to an electrode


Ferrocene GOX_{ox} Glucose 2e- Ferrocenium GOX_{red} GOX_{red} Gluconolactone



- Increasing concentration of glucose
- n Current proportional to glucose concentration
- n Randles-Sevcik equation
- $I_p = (2.687 \times 10^5) n^{3/2} v^{1/2} D^{1/2} A C$

@ J. Lamb

